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Abstract. A theoretical and numerical investigation of the quantum tunnelling of the domain
walls in ferromagnets and weak ferromagnets has been performed, taking into account the
interaction between the walls and the thermal excitations of the crystal. A numerical method for
making calculations of the probability of thermally stimulated quantum depinning as a function
of temperature has been evolved.

1. Introduction

Macroscopic quantum effects in magnetism are currently of great interest. Such phenomena
are important in tests of quantum mechanics [1]. In particular, magnetic domain wall
tunnelling seems to be one of the most appropriate subjects for investigation in this
field. Together with detailed theoretical and experimental research into domain walls in
ferromagnets [2–5, 14], recently similar phenomena occurring in weak ferromagnets were
described [6].

For the description of the domain wall dynamics, it is convenient to apply a model
in which the wall is considered as a quasiparticle with a certain effective massm. Such
a quasiparticle transfers, via the crystal, a change in magnetic moment orientation. In
the movement through the crystal, the quasiparticle can be trapped by a magnetic pinning
centre—as produced, for example, by an impurity raising the anisotropy energy locally. The
domain wall can then overcome this energy barrier in the following ways: by absorption of
an external field’s energy, or due to thermal activation, or via tunnelling.

Tunnelling and thermal activation are usually considered as competing processes; as
a result, one might be led to think that tunnelling would be observable only at extremely
low temperatures, of about 0.001–1 K, whereas at higher temperatures tunnelling would be
suppressed by thermal activation. However, this is not always the case. The purpose of this
paper is to carry out a theoretical and numerical investigation of the situations in which to
some extent the two above-discussed phenomena can cooperate. One way of thinking of this
is to assume that, due to interaction with thermal excitations of the crystal and absorption
of their energy, the wall will be ‘raised’ in front of the barrier. As a result, the effective
height of the barrier will decrease and, accordingly, the tunnelling rate will increase. Also,
we give a detailed discussion of this mechanism for the Bloch walls and walls in weak
ferromagnets.
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2. Thermally activated tunnelling of the Bloch walls

2.1. The model and equations of motion

Let us consider first a 180◦ Bloch wall in a uniaxial crystal. The form of the wall at rest is
given by the well-known Landau–Lifshitz [9] exact solution

sinθ = tanh(x/
√
A/K1) (1)

wherex is directed along the easy axis,A is the exchange constant andK1 is the uniaxial
anisotropy constant. For a travelling wall an additional ‘kinetic’ energyK arises. This may
be represented in a form that is quadratic in the velocityv, namelyK = v2md/2, where
md = Eg/8πAγ 2 sin2 θ is the so-called D̈oring mass [8], or the surface density of the mass,
andEg =

√
AK1 is the surface energy density of the wall. On this basis, the equation of

motion takes the Newton form:

md
d2X

dt2
= 2IsH

whereX is the coordinate of the centre of the wall. Let us consider interaction between the
wall and a defect, introducing the potential energyU(X); then the latter equation takes the
form

md
d2X

dt2
= 2IsH − dU(X)

dX
. (2)

In this paper we consider point-like repulsive impurity. In this case the potential energy
of the wall will change according toU(θ) = U0 cos2 θ , whereU0 is the maximal value of
the potential energy attainable when the impurity lies at the centre of the wall. If one takes
into consideration equation (1), it is easy to obtain the explicit functionU(X):

U(X) = U0(1− tanh2(X/
√
A/K1)) = U0 cosh−2(X/a) (3)

wherea =
√
A/K1 is the characteristic width of both the domain wall and the potential

U(X).
In deriving equation (2), it was assumed that the structure of the moving wall does not

vary and that the definition ofm contains the energy of the rest wall. However, Walker
[7] has shown that this assumption is justified only for slowly travelling walls. As follows
from exact solutions of the equation of motion for the Bloch wall, the structure of a wall
(in particular, its width and mass) strongly depends on the velocity of the movement. When
the wall velocity tends to some critical valuec, the derivative of the wall energy reduced
to infinity, its mass tends to infinity and its width tends to zero. Usually, for normal
ferromagnets, the Walker limiting velocityc has a value around several kilometres per
second, and in this casemc2 � U0. For this reason, one may assume that the condition
v2/c2 � 1 is usually satisfied for ferromagnets; therefore, in the current section, we shall
limit consideration to the case of small velocities.

In the context of the problem under discussion, the following physical situation will be
of interest to us. Let a domain wall with the kinetic energyK arrive at a potential barrier
with the heightU0, which simulates its interaction with a defect of the crystal. IfK < U0,
the segment of wall in the immediate vicinity of the barrier will be trapped in a metastable
minimum. It is acceptable to consider such a segment as an isolated quasiparticle, with the
effective mass determined as an integral over the area of the defect [4].

As stated above, there are three ways for the wall to overcome barrier: with the help of
an external field, due to thermal activation and via tunnelling. Let us consider a very weak
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field

H � 1

Is

∣∣∣∣∂U∂X
∣∣∣∣ .

Such a field cannot disengage the wall, but it will create asymmetry for displacements of
the wall in front of the barrier and behind the barrier. For the wall structure to remain
unchanged, the conditionU0 � mc2 must be satisfied. On the other hand, the height of
the barrier should not be too small, or thermal activation will prevail and the tunnelling
will be suppressed. Together, these restrictions lead to a rather narrow range of reasonable
parameters. Nevertheless, the values which are acceptable are normal for ferromagnets;
therefore it is possible to use them for the calculations. We will assume a height of barrier
U0 = 10−14 erg, a quasiparticle massm = 10−26 g, a width of potentiala = 10−6 cm and
a defect areaS = 10−13 cm2.

2.2. Calculations and results

By virtue of the prior assumption of the weakness of the external field, it is appropriate
to assume that the width of the metastable minimum is much greater than the width of
the barrier, whereas its depth is considerably smaller than the barrier height. In such a
case, the quasiparticles in front of the barrier have a quasi-continuous spectrum and using
a Maxwellian distribution for the analysis of the problem is acceptable.

Let us consider a quasiparticle in thermal equilibrium with a crystal. We consider an
ensemble containingN such particles. We shall perform computations according to the
following computational scheme. The interval of energy from 0 up toUmax† was divided
into equal subintervals of widthδw. The number of particles in each subinterval can be
found from the expression

Nw =
∫ w+δw/2

w−δw/2

2N√
π
(kBT )

−1.5√w exp

(
− w

kBT

)
dw. (4)

In the next step we assign to all of the particles within the given subinterval the same
average valuew. The validity of this procedure was checked numerically, i.e. the number
of divisionsN was adjusted so as to guarantee the stability of the computation scheme as
a whole.

Furthermore, the barrier penetrabilityD was calculated for each subinterval using the
well-known formulae [10]

D =


sinh2(πka)

sinh2(πka)+ cosh2((π/2)
√

32π2U0ma2/h2− 1)
for 32π2mU0a

2/h2 < 1

sinh2(πka)

sinh2(πka)+ cos2((π/2)
√

1− 32π2U0ma2/h2)
for 32π2mU0a

2/h2 > 1

(5)

where k = √2mw/h̄. We emphasize that equation (5) is the exact solution of the
Schr̈odinger equation for the potential (3).

The productDNw givesNw0, or the number of particles from a given subinterval that
overcome the barrier. The total sum of all of theNw0 givesN0, which is the total number
of particles of the ensemble transmitted through the barrier. ThusF = N0/N will be the
effective barrier penetrability. Let us note that the magnitude ofF is determined not only

† Umax was adjusted so as to lead to the neglect of a number of particles outside the interval for each given value
of the temperature.
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by the tunnelling but also by the over-barrier reflection. In fact, even in the case where the
energy of the particle is larger thanU0, D may be less than 1.

The probability of thermal activationG can be easily found by calculating the fraction
of particles with energy aboveU0:

G =
∫ ∞
U0

2√
π
(kBT )

−1.5√w exp

(
− w

kBT

)
dw. (6)

In numerical calculations, for the upper bound we of course make the substitution
∞→ Umax, with the provisos noted above.

Figure 1. The effective quantum barrier penetrabilityF(T ) in comparison with the classical
thermal activation probabilityG(T ) for the Bloch wall over a wide temperature region.

Figure 2. The effective barrier penetrabilityF(T ) and classical thermal activation probability
G(T ) for the Bloch wall at low temperatures (up to 20 K).

The dependencies of both the effective barrier penetrabilityF and the probability of
thermal activationG on the temperature are plotted in figures 1 and 2. Figure 1 shows
the influence of the above-discussed mechanism over a wide temperature range from 0 to
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300 K. In figure 2, for clarity, we have plotted just the results for the narrow region from
0 to 20 K, in which the greatest difference betweenF andG is found. We hope that these
results demonstrate the severity of the exposure of the tunnelling to the depinning processes.

3. Thermostimulated domain wall tunnelling in a weak ferromagnets; accounting for
the quasi-relativistic phenomena

As stated above, the thermal stimulation of tunnelling through Bloch walls can be realized
only under rigid restrictions, especially as regards the parameterU0. For high barriers,
the conditionU0 � mc2 may be broken and the structure of the wall will be varied;
quasi-relativistic phenomena arise for this reason. How to account for such peculiarities
will be demonstrated by means of an example: walls in a weak ferromagnet. A theory
which successfully described the high-energy dynamics in such materials was evolved in
reference [11]. Weak ferromagnets have very suitable properties for comparison of theory
with experimental data. Walls in weak ferromagnets, as a rule, have masses one or two
orders of magnitude smaller then those of walls in ferromagnets, and their widths are
significantly smaller too. Both of these factors lead to increases of the tunnelling rate. Let
us also note that very pure samples with low defect concentrations are available now; this
leads to good reproducibility of the results of measurements.

3.1. The model

Let us consider, for example, a weak ferromagnet of terbium orthoferrite type within the
two-lattice approximation using the ferromagnetic and antiferromagnetic vectorsm and l,
respectively. Its thermodynamical potential will be [12]

80(l,m) = Jm2+ A(∇ · l)2−m ·H + d1mxlz − d3mzlx +Kacl2z +Kabl2x
whereJ andA are, respectively, the uniform and non-uniform exchange constants,Kac and
Kab are the anisotropy constants,H is the total external field acting on the wall, andd1

andd3 are the Dzyaloshinsky exchange constants. After minimization with respect tom,
one obtains [12, 13]

80 = A(∇ · l)2− χ
2
⊥
2
(H 2− (H ·L)2)−M0

z Hzlx −M0
xHxlz +Kacl2z −Kabl2x

whereχ⊥ is the transverse susceptibility, andM0
x andM0

z are the values of the magnetization
in the phases04(l ‖ x) and 02(l ‖ z) respectively. Without loss of generality, we can
considerac-type walls only. In spherical coordinates, the corresponding Lagrange density
will be [15]

L = χ⊥
2γ 2

(
∂l

∂t

)2

− χ⊥
γ
H

[
l,
∂l

∂t

]
−80.

The appropriate Lagrange function per unit area of the domain wall has the essentially
quasi-relativistic form [11]

L = −m∗c2
√

1− v2/c∗2− U(x) (7)

wherem∗c∗2 = 4
√
AK and wherec∗ = γ√A/χ⊥ is the spin-wave velocity;U(x) is the

potential of the wall–defect interaction. The Hamiltonian associated with equation (7) will
then be

Hg(p, x) = c∗
√
p2+m∗2c∗2+ U(x) (8)
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where

p = mv√
1− v2/c∗2

is the canonical impulse. The kinetic energy will then beK = pc∗.
The quasi-relativistic form of Hamiltonian (8) contains the essential peculiarities of the

wall dynamics. It is important for us that the energy distribution for the walls (quasiparticles)
will be appreciably changed, and that the effective barrier penetrabilityF and the probability
of thermally activated depinningG may be changed too. Therefore it is necessary to define
an energy distribution for quasi-relativistic particles. For this purpose we shall use the Gibbs
canonical distribution

dzp = a0 exp(−K(p)/kBT ) dp

wherea0 can found by using the normalization condition
∫∞
−∞ dzp = 1. SinceK(p) = cp,

z(w) = 1

2(kBT )3
w2 exp

(
− w

kBT

)
. (9)

Obviously, the maximum of this distribution, in comparison with that for a classical
distribution, will be shifted into a higher-energy region. Therefore the fraction of ‘vigorous’
particles will increase, andF andG will correspondingly change.

3.2. Results of the calculations

From the results of numerical calculations detailed below, it is apparent that the walls in
weak ferromagnets are in fact very suitable subjects for the study of tunnelling in the high-
temperature range. Let us give the main parameters. We will take the effective mass of a
wall to bem = 10−13 g cm−2. We shall take the width of the energy barrier of the defect
and the width of the wall1 to be both of the order of 10−6 cm. The area of the defect and
the area of the tunnelling segment of the wall will both be taken asS = 10−13 cm2; hence
the quasiparticle mass will bem∗ = 10−26 g. The height of the barrier can be found from
the value of the coercive force [6]:U0 = 10−13 erg. On the face of it, such values seem
scarcely suitable for tunnelling: after formal substitution of these parameters in equation
(5), one finds the negligibly small range forD of about 10−80 or less. However, taking into
account the quasi-relativistic situation essentially changes the physics.

Let us consider this situation in more detail. Now, as before, we will carry out modelling
of the barrier using the function (3). We will sort the particles of an ensemble by energy
according to the algorithm presented in section 2. But taking into account equation (9), we
find now forNw

Nw =
∫ w+δw/2

w−δw/2

Nw2

2(kBT )3
exp

(
− w

kBT

)
dw. (10)

Accordingly, the probability of thermally activated depinning will be

G =
∫ ∞
U0

w2

2(kBT )3
exp(−w/kBT ) dw.

The calculations ofD for a wall in a weak ferromagnet were carried out numerically
using the technique suggested in reference [6]. The final computational results forF andG
are plotted in figure 3. It is apparent that with the chosen parameters the difference between
the probability of quantum thermally stimulated depinningF and thermally activated
depinningG is larger than for normal ferromagnets. In particular, at 50 K,F is twice
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Figure 3. The effective quantum barrier penetrabilityF(T ) and the probability of thermally
activated depinningG(T ) for a wall in a weak ferromagnet.

the size ofG and, even at room temperature, the difference betweenF andG amounts to
0.05. Thus, taking account of quantum effects in the mechanism of the depinning is actually
essential.

In section 2 we considered Bloch wall tunnelling in normal ferromagnets. The results
obtained for that case are valid for low-energy walls only. For high-energy walls the
dynamics also becomes quasi-relativistic and for its description the Walker [7] technique is
necessary. The structure of the Walker solution corresponds formally to Hamiltonian (9);
therefore one might think it reasonable to extend the results of section 3 to Bloch walls.
However, the nature of the maximal velocity in this case is different. In ferromagnets,
when the wall velocity tends to its maximal (not limiting) value, the form of the wall can
be essentially changed. In this case it is necessary to take into account an additional energy,
connected with leakage fields, because extension of the results of section 3 to Bloch walls
requires additional analysis.

4. The feasibility of experimental tests

Domain wall depinning via tunnelling is usually investigated at very low temperatures (see,
for example, the review [4]). Unfortunately, we have no data on tunnel depinning at high
temperatures. The data concerning the basic parameters of a problem, such as the form,
width and height of the energy barrier, were obtained indirectly and, at the present time,
are not very reliable. This made it difficult to compare theory with experimental data.
Therefore, special importance attaches to experiments in which the depinning of solitary
walls is investigated. The problems connected with the statistical nature of depinning will
in this case be eliminated. In this respect, the experimental technique used in reference [5]
is very interesting: a solitary wall tunnelling in a superthin wire was investigated. In our
view, extension of this technique to the high-temperature region may be very useful for
testing the validity of the physical mechanism described in the present paper. Testing of
the results presented could also be carried out using the magnetic noise technique. Clearly,
there is an urgent need for a search for departures from the classical temperature dependence
for any physical quantities associated with wall depinning.
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